(153)2+(252)2+(351)2+42+(454)2+..... upto 10 terms =(58)2+(512)2+(516)2+(520)2+(524)2+... upto 10 terms. (8)2+(12)2+(16)2+... up to 10 terms Tn[4(n+1)]2 where n varies from 1 to 10. =16(n2+2n+1) ∑Tn=n=1∑1016(n2+2n+1) =16[385+55(2)+10] =16(505)
or n=1∑10n2=6n(n+1)(2n+1)=610×11×21=385 n=1∑10n=2n(n+1)=210×11=55 n=1∑101=n=10 ∴(58)2+(512)2+(516)2+..... upto 10 terms =2516×505
It is given that 2516×505=516m ∴m=5505=101