Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of n terms of an A.P. is cn (n - 1), where c≠0, then the sum of the squares of these terms is
Q. If the sum of n terms of an A.P. is cn (n - 1), where
c
=
0
,
then the sum of the squares of these terms is
1369
203
Sequences and Series
Report Error
A
c
2
n
(
n
+
1
)
2
0%
B
3
2
c
2
(
n
−
1
)
(
2
n
−
1
)
75%
C
3
2
c
2
n
(
n
+
1
)
(
2
n
+
1
)
25%
D
none of these
0%
Solution:
If
t
r
be the rth term of the A.P., then
t
r
=
S
r
−
S
r
−
1
=
cr
(
r
−
1
)
−
c
(
r
−
1
)
(
r
−
2
)
=
c
(
r
−
1
)
(
r
−
r
+
2
)
=
2
c
(
r
−
1
)
We have,
t
1
2
+
t
2
2
+
...
+
t
n
2
=
4
c
2
(
0
2
+
1
2
+
2
2
+
...
+
(
n
−
1
)
2
)
=
4
c
2
6
(
n
−
1
)
n
(
2
n
−
1
)
3
2
c
2
n
(
n
−
1
)
(
2
n
−
1
)