Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of first n terms of an A.P. is c n2, then the sum of squares of these n terms is
Q. If the sum of first
n
terms of an A.P. is
c
n
2
, then the sum of squares of these
n
terms is
69
159
Sequences and Series
Report Error
A
6
n
(
4
n
2
−
1
)
c
2
B
3
n
(
4
n
2
+
1
)
c
2
C
3
n
(
4
n
2
−
1
)
c
2
D
6
n
(
4
n
2
+
1
)
c
2
Solution:
Let
S
n
=
c
n
2
S
n
−
1
=
c
(
n
−
1
)
2
=
c
n
2
+
c
−
2
c
n
∴
T
n
=
2
c
n
−
c
(
∵
T
n
=
S
n
−
S
n
−
1
)
T
n
2
=
(
2
c
n
−
c
)
2
=
4
c
2
n
2
+
c
2
−
4
c
2
n
∴
Required sum,
Σ
T
n
2
=
6
4
c
2
⋅
n
(
n
+
1
)
(
2
n
+
1
)
+
n
c
2
−
2
c
2
n
(
n
+
1
)
=
3
2
c
2
n
(
n
+
1
)
(
2
n
+
1
)
+
3
n
c
2
−
6
c
2
n
(
n
+
1
)
=
3
n
c
2
(
4
n
2
+
6
n
+
2
+
3
−
6
n
−
6
)
=
3
n
c
2
(
4
n
2
−
1
)