Let the GP be a,ar,ar2,........, where 0<r<1.
Then a+ar+ar2+........=3
and a2+a2r2+a2r4+…=9/2 ⇒1−ra=3 and 1−r2a2=29 ⇒1−r29(1−r)2=29 ⇒1+r1−r=21 ⇒r=31
Putting r=31 in 1−ra=3, we get a=2
Now, the required sum of the cubes is a3+a3r3+a3r6+............ =1−r3a3=1−(1/27)8=13108