Let the first term be a and common ratio be r. a+ar+ar2+…=3 ⇒1−ra=3...(i) a3+a3r3+a3r6+…=1927 ⇒1−r3a3=1927...(ii)
From (i) and (ii), we get (1−ra)3÷(1−r3a3) =(33)÷1927 ⇒(1−r)31−r3=19 ⇒(1−r)21+r+r2=19 ⇒1+r+r2=19−38r+19r2 ⇒18r2−39r+18=0 ⇒6r2−13r+6=0 ⇒(2r−3)(3r−2)=0 ⇒r=32…[ As ∣r∣<1] 1−32a=3… [From (i)] ⇒a=1