According to question, we have np+npq=24 ⇒np(1+q)=24…(i)
and np⋅npq=128 ⇒n2p2q=128…(ii)
Dividing the square of (i) by (ii), we get n2p2qn2p2(1+p2)=12824×24 ⇒q1+2q+q2=29 ⇒2+4q+2q2=9q ⇒2q2−5q+2=0 ⇒(2q−1)(q−2)=0 ⇒q=21, 2 but q=2(∵0≤q≤1) ⇒q=21 ∴p=1−q=1−21=21
From (i), we get n⋅21(1+21)=24 ⇒n⋅43=24 ⇒n=32
Hence, the binomial distribution is (q+p)n i.e. (21+21)32