Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum and the product of the mean and variance of a binomial distribution are 24 and 128 respectively, then find the distribution.
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the sum and the product of the mean and variance of a binomial distribution are $24$ and $128$ respectively, then find the distribution.
Probability - Part 2
A
$\left(\frac{1}{4}+\frac{3}{4}\right)^{32}$
100%
B
$\left(\frac{1}{2}+\frac{1}{2}\right)^{30}$
0%
C
$\left(\frac{1}{2}+\frac{1}{2}\right)^{32}$
0%
D
$\left(\frac{1}{4}+\frac{3}{4}\right)^{30}$
0%
Solution:
According to question, we have
$np + npq = 24$
$\Rightarrow np\left( 1 + q\right) = 24\quad\ldots\left(i\right)$
and $np \cdot npq = 128$
$\Rightarrow n^{2}p^{2}q = 128\quad\ldots\left(ii\right)$
Dividing the square of $\left(i\right)$ by $\left(ii\right)$, we get
$\frac{n^{2}p^{2}\left(1+p^{2}\right)}{n^{2}p^{2}q} = \frac{24\times24}{128}$
$\Rightarrow \frac{1+2q+q^{2}}{q} = \frac{9}{2}$
$\Rightarrow 2 + 4q + 2q^{2} = 9q$
$\Rightarrow 2q^{2}- 5 q + 2 = 0$
$\Rightarrow \left(2q - 1\right) \left(q - 2\right) = 0$
$\Rightarrow q = \frac{1}{2}$, $2$ but $q \ne 2\left(\because 0 \le q \le 1\right)$
$\Rightarrow q = \frac{1}{2}$
$\therefore p = 1 - q = 1 -\frac{1}{2} = \frac{1}{2}$
From $\left(i\right)$, we get
$n\cdot\frac{1}{2}\left(1+\frac{1}{2}\right) = 24$
$\Rightarrow n\cdot\frac{3}{4} = 24$
$\Rightarrow n = 32$
Hence, the binomial distribution is $\left(q+p\right)^{n}$ i.e.
$\left(\frac{1}{2}+\frac{1}{2}\right)^{32}$