Given, x2+y2=16x ⇒x2−16x+y2=0 ⇒x2−2(x)8+(8)2−(8)2+y2=0 ⇒(x−8)2+y2=64...(i) ∴ Centre = (8, 0) and radius = 8
Since, the straight line 3x+4y=k touches the circle x2+y2=16, therefore the length of perpendicular from the centre (8, 0) to the straight line 3x+4y−k=0 is equal to the radius of the circle.
i.e., 8=∣∣9+163(8)+4(0)−k∣∣ ⇒8=∣∣2524−k∣∣ ⇒8=5∣24−k∣ ⇒∣24−k∣=40 ⇒24−k=±40
Taking positive sign, we get 24−k=40 ⇒−k=−40−24=16 ⇒k=−16
Taking negative sign, we get 24−k=−40 ⇒−k=−40−24=−64 ⇒k=64 ∴k=−16,64