Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the solution of the differential equation (dy/dx)=(ax+3/2y+f) represents a circle, then the value of 'a' is
Q. If the solution of the differential equation
d
x
d
y
=
2
y
+
f
a
x
+
3
represents a circle, then the value of
′
a
′
is
3958
234
Differential Equations
Report Error
A
2
9%
B
−
2
55%
C
3
27%
D
−
4
9%
Solution:
We have,
d
x
d
y
=
2
y
+
f
a
x
+
3
⇒
(
a
x
+
3
)
d
x
=
(
2
y
+
f
)
d
y
⇒
a
2
x
2
+
3
x
=
y
2
+
f
y
+
C
(Integrating)
⇒
−
2
a
x
2
+
y
2
−
3
x
+
f
y
+
C
=
0
This will represent a circle, if
2
−
a
=
1
⇒
a
=
−
2
[
∵
coefficient of
x
2
=
coefficient of
y
2
]