Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the solution of the differential equation ( dy / dx )=( ax +3/2 y + f ) represents a circle, then the value of 'a' is
Q. If the solution of the differential equation
d
x
d
y
=
2
y
+
f
a
x
+
3
represents a circle, then the value of
′
a
′
is
1937
218
Differential Equations
Report Error
A
2
0%
B
-2
0%
C
3
100%
D
-4
0%
Solution:
We have,
d
x
d
y
=
2
y
+
f
a
x
+
3
⇒
(
a
x
+
3
)
d
x
=
(
2
y
+
f
)
d
y
⇒
a
2
x
2
+
3
x
=
y
2
+
f
y
+
C
(Integrating)
⇒
−
2
a
x
2
+
y
2
−
3
x
+
f
y
+
C
=
0
This will represent a circle, if
−
2
a
=
1
[
∵
Coeff. of
x
2
=
Coeff. of
y
2
]
and,
4
9
+
4
f
2
−
C
>
0
[
Using
:
g
2
+
f
2
−
c
>
0
]
⇒
a
=
−
2
and
9
+
f
2
−
4
C
>
0