Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the solution of the differential equation (d y/d x)=(x3 + x y2/y3 - y x2) is yk-xk=2x2y2+λ (where, λ is an arbitrary constant), then the value of k is
Q. If the solution of the differential equation
d
x
d
y
=
y
3
−
y
x
2
x
3
+
x
y
2
is
y
k
−
x
k
=
2
x
2
y
2
+
λ
(where,
λ
is an arbitrary constant), then the value of
k
is
529
160
NTA Abhyas
NTA Abhyas 2022
Report Error
A
2
B
4
C
1
D
2
3
Solution:
We have,
d
x
d
y
=
y
3
−
y
x
2
x
3
+
x
y
2
Now,
x
d
x
y
d
y
=
y
2
−
x
2
x
2
+
y
2
Let,
y
2
=
Y
;
x
2
=
X
⇒
x
d
x
y
d
y
=
d
X
d
Y
Hence, the equation is
d
X
d
Y
=
Y
−
X
X
+
Y
⇒
Y
d
Y
−
X
d
X
=
X
d
Y
+
Y
d
X
On integrating we get
2
Y
2
−
2
X
2
=
∫
d
(
X
Y
)
=
X
Y
+
c
or
Y
2
−
X
2
=
2
X
Y
+
λ
⇒
y
4
−
x
4
=
2
x
2
y
2
+
λ