Q.
If the shortest distance from (2,−14) to the circle x2+y2+6x+4y−12=0 is d and the length of the tangent drawn from the same point to the circle is l, then d+l=
Given circle, x2+y2+6x+4y−12=0
Here, centre is O(−3,−2)
and radius =9+4+12=25=5
Shortest distance of the point P(2,−14) to the circle is AP=d AP=OP−OA (OA=R) OP=(−3−22+(−2+14)2 =25+144=169=13 ⇒AP=13−5=8=d
Length of tangent from the point P(2,−14) is =(2)2+(−14)2+6⋅2+4(−14)−12 =4+196+12−56−12 =144=12=l
So, required d+l=8+12=20=25.