Q.
If the scalar product of the vector i^+j^+k^ with a unit vector along the sum of vectors 2i^+4j^−5k^ and λi^+2j^+3k^ is equal to onethen thevalue of λ is
Let a=i^+j^+k^,b=2i^+4j^−5k^ and c=λi^+2j^+3k^
Now, b+c=2i^+4j^−5k^+λi^+2j^+3k^=(2+λ)i^+6j^−2k^ ∴∣b+c∣=(2+λ)2+(6)2+(−2)2 =4+λ2+4λ+36+4=λ2+4λ+44
The unit vector along (b+c), i.e., ∣b+c∣b+c=λ2+4λ+44(2+λ)i^+6j^−2k^
Sualar product (i^+j^+k^) with this unil vector is 1 . ∴(i^+j^+k^)⋅∣b+c∣b+c=1 ⇒(i^+j^+k^)⋅λ2+4λ+44(2+λ)i^+6j^−2k^=1 ⇒λ2+4λ+441(2+λ)+1(6)+1(−2)=1 ⇒λ2+4λ+44(2+λ)+6+−2=1 ⇒λ+6=λ2+4λ+44 ⇒(λ+6)2=λ2+4λ+44 ⇒λ2+12λ+36=λ2+4λ+44 ⇒8λ=8 ⇒λ=1
Hence, the value of λ is 1 .