The unit vector along mi^+2j^+3k^ is m2+4+9mi^+2j^+3k^=m2+13mi^+2j^+3k^ Now, (i^+j^+2k^).(m2+13mi^+2j^+3k^)=2 ⇒m2+13m+m2+132+m2+136=2 ⇒m2+13m+8=2
Squaring on both sides, we get ⇒(m+8)2=4(m2+13) ⇒m2+16m+64=4m2+52 ⇒3m2−16m−12=0 ⇒m=616±256+144=616±20 ⇒m=6,−32 ⇒m=6, as −32 is not possible.