Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the scalar product of the vector hati+ hatj+2 hatk with the unit vector along m hati+2 hatj+3 hatk is equal to 2, then one of the values of m is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the scalar product of the vector $ \hat{i}+\hat{j}+2\hat{k} $ with the unit vector along $ m\hat{i}+2\hat{j}+3\hat{k} $ is equal to $2$, then one of the values of $m$ is
KEAM
KEAM 2010
Vector Algebra
A
3
11%
B
4
20%
C
5
30%
D
6
33%
E
7
33%
Solution:
The unit vector along $ m\hat{i}+2\hat{j}+3\hat{k} $ is $ \frac{m\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{{{m}^{2}}+4+9}}=\frac{m\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{{{m}^{2}}+13}} $ Now, $ (\hat{i}+\hat{j}+2\hat{k}).\left( \frac{m\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{{{m}^{2}}+13}} \right)=2 $
$ \Rightarrow $ $ \frac{m}{\sqrt{{{m}^{2}}+13}}+\frac{2}{\sqrt{{{m}^{2}}+13}}+\frac{6}{\sqrt{{{m}^{2}}+13}}=2 $
$ \Rightarrow $ $ \frac{m+8}{\sqrt{{{m}^{2}}+13}}=2 $
Squaring on both sides, we get
$ \Rightarrow $ $ {{(m+8)}^{2}}=4({{m}^{2}}+13) $
$ \Rightarrow $ $ {{m}^{2}}+16m+64=4{{m}^{2}}+52 $
$ \Rightarrow $ $ 3{{m}^{2}}-16m-12=0 $
$ \Rightarrow $ $ m=\frac{16\pm \sqrt{256+144}}{6}=\frac{16\pm 20}{6} $
$ \Rightarrow $ $ m=6,-\frac{2}{3} $
$ \Rightarrow $ $ m=6, $ as $ -\frac{2}{3} $ is not possible.