Given, cubic equation is x3−42x2+336x−512=0 ⇒x2(x−2)−40x(x−2)+256(x−2)=0 ⇒(x−2)(x2−40x+256)=0 ⇒(x−2){x2−32x−8x+256}=0 ⇒(x−2){x(x−32)−8(x−32)}=0 ⇒(x−2)(x−32)(x−8)=0 ⇒(x−2)(x−8)(x−32)=0 ⇒x=2,8,32
Which represents a geometric progression in increasing order.
Common ratio =28=4:1