Q.
If the roots of the equation (x−a)(x−b)+(x−b)(x−c)+(x−c)(x−a)=0 are equal, then a2+b2+c2 is equal to
5152
204
KEAMKEAM 2015Complex Numbers and Quadratic Equations
Report Error
Solution:
Given equation is (x−a)(x−b)+(x−b)(x−c)+(x−c)(x−a)=0 ⇒x2−(a+b)x+ab+x2−(b+c)x+bc+x2−(c+a)x+ca=0 ⇒3x2−2(a+b+c)x+(ab+bc+ca)=0
Since, roots of the above equation are equal. Then, discriminant,D=0 ⇒4(a+b+c)2−12(ab+bc+ca)=0 ⇒(a+b+c)2−3(ab+bc+ca)=0 ⇒a2+b2+c2+2ab+2bc +2ca−3(ab+bc+ca)=0 ⇒a2+b2+c2=ab+bc+ca