Q.
If the roots of the equation x2−5x+16=0 are α,β and the roots of equation x2+px+q=0 are α2+β2,2αβ, then
3824
206
Complex Numbers and Quadratic Equations
Report Error
Solution:
Since roots of the equation x2−5x+16=0 are α,β. ⇒α+β=5 and αβ=16 and α2+β2+2αβ=−p ⇒(α+β)2−2αβ+2αβ=−p⇒25−32+8=−p ⇒p=−1 and (α2+β2)(2αβ)=q ⇒[(α+β)2−2αβ][2αβ]=q ⇒q=[25−32]216=−56
So, p=−1,q=−56