Q.
If the roots of the equation x+a1+x+b1=c1 are equal in magnitude but opposite in sign, then their product is
2419
230
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, ((x+b)+(x+a)c=(x+a)(x+b) ⇒x2+bx+ax−2cx+ab−bc−ca=0
Now, let roots be α and β, then α+β=0, αβ=ab−bc−ac α+β=0 ⇒b+a=2c
and αβ=ab−(b+a)c ⇒αβ=ab−2(a+b)2 ⇒αβ=21(−a2−b2) ∴αβ=−21(a2+b2)