Q.
If the reciprocals of 2,(log)(3x−4)4 and (log)(3x+27)4 are in arithmetic progression, then x is equal to
2071
206
NTA AbhyasNTA Abhyas 2020Sequences and Series
Report Error
Solution:
Reciprocals of 2,log(3x−4)log4,log(3x+27)log4 are in A.P. ⇒21,log4log(3x−4),log4log(3x+27) are in A.P. ⇒21log4,log(3x−4),log(3x+27) are in A.P. ⇒log2,log(3x−4),log(3x+27) are in A.P. ⇒2,3x−4,3x+27 are in G.P. ⇒(3x−4)2=2(3x+27)
Let 3x=y ⇒(y−4)2=2(y+27) ⇒y2+16−8y=2y+7 ⇒y2−10y+9=0 ⇒(y−1)(y−9)=0⇒y=1,9 ⇒3x=1,9⇒x=0,2
But, for x=0,3x−4=−3<0
So, x=2 will only form an A.P.