Let the A.M. of the numbers a and b is A and G.M. of a and b is G, then A=2a+b and G=ab
Given, A:G=m:n
i.e., GA=nm⇒2aba+b=nm
Applying componendo and dividendo rule, we get a+b−2aba+b+2ab=m−nm+n ⇒(a)2+(b)2−2ab(a)2+(b)2+2ab=m−nm+n ⇒(a−b)2(a+b)2=m−nm+n ⇒a−ba+b=m−nm+n
Again, applying componendo and dividendo rule, we get (a+b)−(a−b)(a+b)+(a−b)=m+n−m−nm+n+m−n ⇒2b2a=m+n−m−nm+n+m−n ⇒ba=m+n−m−nm+n+m−n
Now, squaring on both sides, we get ba=(m+n−m−n)2(m+n+m−n)2 ⇒ba=m+n+m−n−2m+nm−nm+n+m−n+2m+nm−n [∵(a+b)2=a2+b2+2ab(a−b)2=a2+b2−2ab] ⇒ba=2m−2m2−n22m+2m2−n2[∵(a+b)(a−b)=a2−b2] ⇒ba−m−m2−n2m+m2−n2 ⇒a:b=(m+m2−n2):(m−m2−n2)