Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the range of values of 'a' for which f(.x.)=(log)a(4 a x - x2) is strictly increasing ∀ x∈ [(3/2) , 2] is (.p,q].∪(.r,∞ .) then the value of (.2p+4q+r.) equals
Q. If the range of values of
′
a
′
for which
f
(
x
)
=
(
l
o
g
)
a
(
4
a
x
−
x
2
)
is strictly increasing
∀
x
∈
[
2
3
,
2
]
is
(
p
,
q
]
∪
(
r
,
∞
)
then the value of
(
2
p
+
4
q
+
r
)
equals
465
157
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
5
Solution:
f
′
(
x
)
=
(
4
a
x
−
x
2
)
l
o
g
a
(
4
a
−
2
x
)
≥
0
f
′
(
x
)
=
x
(
x
−
4
a
)
l
o
g
a
(
x
−
2
a
)
≥
0
C
−
1
:
a
∈
(
1
,
∞
)
⇒
x
(
x
−
4
a
)
(
x
−
2
a
)
≥
0
x
∈
(
0
,
2
a
)
so always
↑
C
−
2
:
a
∈
(
0
,
1
)
x
(
x
−
4
a
)
(
x
−
2
a
)
<
0
x
∈
(
2
a
,
4
a
)
2
a
≤
2
3
⇒
a
≤
4
3
and
4
a
>
2
⇒
a
>
2
1
So
a
∈
(
2
1
,
4
3
]
∪
[
1
,
∞
)