Q.
If the range of the function f(x)=p−x2+1x−1 does not contain any values belonging to the interval [−1,3−1] then the true set of values of p, is
2858
119
Relations and Functions - Part 2
Report Error
Solution:
We have y=p−x2+1x−1⇒py−x2y+y=x−1⇒x2y+x−y(p+1)−1=0
As, x∈R, so D≥0⇒1+4y(y(p+1)+1)≥0⇒4y2(p+1)+4y+1≥0
Since y=[−1,3−1]
So, 4y2(p+1)+4y+1<0∀y∈[−1,3−1] ⇒(2y+1)2+4y2p<0 ⇒p<−1(2y2y+1)2∀y∈[−1,3−1]
Hence p<−(2y2y+1)2∣∣min
Now max. value of (2y2y+1)2 occurs at y=−1 and is equal to 4−1. ∴p<4−1⇒ B