Q.
If the quadratic equation ax2−bx+12=0, where a and b are positive integers not exceding 10 , has roots both greater than 2 , then the number of possible ordered pair (a,b) is
336
90
Complex Numbers and Quadratic Equations
Report Error
Solution:
Θ Both roots are greater than 2 ∴
(i) a f (2) >0 ⇒a(4a−2b+12)>0⇒2a−b+6>0
(ii) D≥0⇒b2−48a≥0⇒b≥43a
(iii) 2a−(−b)>2⇒b>4a ∴b≥43a
If a=1,b≥43,b≥7 Θ2a−b+6>0 ∴a=1,b=7 satisfies it ∴ Number of ordered pairs (a,b)=1