The quadratic equation, 4sec2αx2+2x+(β2−β+21)=0 have real roots ⇒ discriminant =4−4⋅4sec2α(β2−β+21)≥0 ⇒4sec2α(β2−β+21)≤1
But 4sec2α≥4,β2−β+21=(β−21)2+41≥41
So, the equation will be satisfied only When 4sec2α=4 and β2−β+21=41 sec2α=1 and (β−21)2=0 cos2α=1 and β=21 ∴cos2α+cos−1β=1+cos−1(1/2) =1+π/3