Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the product of the matrix B = [2&6&4 1&0&1 -1&1&-1] with a matrix A has the inverse C = [-1&0&1 1&1&3 2&0&2] then A-1 equals
Q. If the product of the matrix
B
=
⎣
⎡
2
1
−
1
6
0
1
4
1
−
1
⎦
⎤
with a matrix
A
has the inverse
C
=
⎣
⎡
−
1
1
2
0
1
0
1
3
2
⎦
⎤
then
A
−
1
equals
6747
188
COMEDK
COMEDK 2014
Matrices
Report Error
A
⎣
⎡
−
3
0
2
−
5
9
2
5
14
9
⎦
⎤
48%
B
⎣
⎡
−
3
0
2
5
0
14
5
9
16
⎦
⎤
21%
C
⎣
⎡
−
3
0
2
−
5
0
14
−
5
2
6
⎦
⎤
24%
D
⎣
⎡
−
3
0
2
−
5
9
14
−
5
2
6
⎦
⎤
7%
Solution:
(
B
A
)
−
1
=
C
(given)
or
A
−
1
B
−
1
=
C
or
A
−
1
⎣
⎡
−
3
0
2
−
3
9
14
−
5
2
6
⎦
⎤
−
1
=
⎣
⎡
1
1
2
0
1
0
1
3
2
⎦
⎤
Multiply by B on both sides, we get
A
−
1
(
B
−
1
B
)
=
⎣
⎡
−
1
1
2
0
1
0
1
3
2
⎦
⎤
⎣
⎡
2
1
−
1
6
0
1
4
1
−
1
⎦
⎤
or
A
−
1
=
⎣
⎡
−
3
0
2
−
5
9
14
−
5
2
6
⎦
⎤
3
×
3