Q.
If the position vectors of the vertices of a ΔABC are OA=3i^+j^+2k^,OB=i^+2j^+3k^
and OC=2i^+3j^+k^, then the length of the
altitude of ΔABC drawn from A is
Since, length of altitude of ΔABC drawn from A is h=21∣BC∣( Area of ΔABC)=21∣BC∣21∣AB×AC∣ ∵AB=−2i^+j^+k^ AC=−i^+2j^−k^
and BC=i^+j^−2k^
So, AB×AC=∣∣i^−2−1j^12k^1−1∣∣ =i^(−1−2)−j(2+1)+k^(−4+1)=−3i^−3j^−3k^ ∴∣AB×AC∣=33 and ∣BC∣=6 ∴h=2333=23