Q.
If the position vectors of the vertices A,B and C of a ΔABC are respectively 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ , then the position vector of the point, where the bisector of ∠A meets BC is :
From given data, we plot the graph below D is the point of intersection of internal angle biscctor of A with line BC.
Now, AB=(2i^+3j^+4k^)−(4i^+7j˙+8k^)=−2i^−4j^−4k^
And AC=(2i^+5j^+7k^)−(4i^+7j^+8k^)=−2i^−2j^−k^ ∣AB∣=6,∣AC∣=3 CDBD=ACAB=36=12
Therefore, position vector of D Point is 3(2(2i+5j+7k)+1(2i+3j+4k))=31(6i^+13j^+18k˙)