Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the point of minima of the function, f ( x )=1+ a 2 x - x 3 satisfy the inequality (x2+x+2/x2+5 x+6)<0, then 'a' must lie in the interval:
Q. If the point of minima of the function,
f
(
x
)
=
1
+
a
2
x
−
x
3
satisfy the inequality
x
2
+
5
x
+
6
x
2
+
x
+
2
<
0
, then 'a' must lie in the interval:
217
134
Application of Derivatives
Report Error
A
(
−
3
3
,
3
3
)
B
(
−
2
3
,
−
3
3
)
C
(
2
3
,
3
3
)
D
(
−
3
3
,
−
2
3
)
Y
(
2
3
,
3
3
)
Solution:
f
′
(
x
)
=
0
⇒
x
=
3
a
or
−
3
a
f
′′
(
x
)
=
−
6
x
Case I if
a
>
0
⇒
x
=
−
3
a
is minima
Case II if
a
<
0
⇒
x
=
3
a
is minima
put
x
=
3
a
and then
x
=
−
3
a
in the given inequality to get the result