Given planes are x−cy−bz=0 .. (i) cx−y+az=0 ... (ii) bx+ay−z=0 ... (iii)
Equation of planes passing through the line of intersection of planes (i) and (ii) may be taken as (x−cy−bz)+λ(cx−y+az)=0 or x(1+λc)−y(c+λ)+z(−b+aλ)=0 .. (iv)
If planes (iii) and (iv) are same, then Eqs. (iii) and (iv) will be identical. b1+xλ=a−(c+λ)=−1−b+aλ ⇒λ=−(ac+b)(a+bc) and λ=−(1−a2)(ab+c) ∴−(ac+b)(a+bc)=−(1−a2)(ab+c) ⇒a−a3+bc−a2bc=a2bc+ac2+ab2+bc ⇒2a2bc+ac2+ab2+a3−a=0 ⇒a(2abc+c2+b2+a2−1)=0 ⇒a2+b2+c2+2abc=1