Q.
If the pth,qth and rth terms of a G.P. are positive numbers a, b and c respectively, then find the angle between the
vectors log a2i^+logb2j^+logc2k^and(q−r)i^+(r−p)j^+(p−q)k^
Let A be the first term and x the common ratio of G.P.
So, a=Axp−1⇒loga=logA+(p−1)logx Similarly,logb=logA+(q−1)logx andlogc=logA+(r−1)logx Ifa=loga2i^+logb2j^+logc2k^ andβ=(q−r)i^+(r−p)j^+(p−q)k^then α.β=2[loga(q−r)+logb(r−p)+logc(p−q)] =2[(q−r){logA+(p−1)logx}+(r−p){logA+(q−1)logx} +(p−q){logA+(r−1)logx}] =2[(q−r+r−p+p−q)logA+(qp−pr−p+r+qr−pq −r+p+pr−qr−p+q)logx]=0
Hence, the angle between αandβis2π⋅