Q.
If the origin is the centroid of the △PQR with vertices P(2a,2,6),Q(−4,3b,−10) and R(8,14,2c), then
165
159
Introduction to Three Dimensional Geometry
Report Error
Solution:
Centroid of the △PQR is (3x1+x2+x3,3y1+y2+y3,3z1+z2+z3)
i.e., (32a−4+8,32+3b+14,36−10+2c)
Origin is the centroid i.e., the coordinates of the centroid are (0,0,0). Then, 32a−4+8=0 ⇒2a+4=0⇒a=−2
Also, 32+3b+14=0⇒3b+16=0 ⇒b=−316
and 36−10+2c=0 ⇒2c−4=0⇒c=2 ∴a=−2,b=3−16,c=2