x+y+z+w<25
Let, x+y+z+w+a=25 , such that a>0 ⇒(x+1)+(y−2)+z+(w−4)+(a−1) =t1+t2+t3+t4+t5=25+1−2−4−1=19 x>−2⇒x≥−1⇒x+1≥0⇒t1≥0,y>1⇒y≥2⇒y−2≥0⇒t2≥0 z≥0⇒t3≥0 w>3⇒w≥4⇒w−4≥0⇒t4≥0 a>0⇒a≥1⇒a−1≥0⇒t5≥0 t1+t2+t3+t4+t5=19 where ti≥0
Number of integral solutions =19+5−1C5−1=23C4=23C19