Q.
If the normals drawn to the hyperbola xy=4 at (αi,βi)(i=1,2,3,4) are concurrent at the point (a,b), then (β1+β2+β3+β4)(α1+α2+α3+α4)(α1α2α3α4)=
The equation of normal to the given hyperbola xy=4 at point (2t,t2) is 2t4=xt3+yt−2=0…(i) ∵ Normal (i) passes through point (a,b), so 2t4−at3+bt−2=0, the equation having roots are 2α1,2α2,2α3 and 2α4, so 21(α1+α2+α3+α4)=2a ⇒α1+α2+α3+α4=a ∑(4α1α2)=0 ∑8α1α2α3=2−b and 16α1α2α3α4=−1 ∵β1+β2+β3+β4=α14+α24+α34+α44 =4α1α2α3α4Σα1α2α3 =4−16−b/2×8=b ∴β1+β2+β3+β4(α1+α2+α3+α4)(α1α2α3α4) =ba(−16)=−16ba