Normal at P(θ) is cosθax−sinθby=a2−b2...(i)
Normal at P(2π+θ) is cos{(π/2)+θ}ax−sin{(π/2)+θ}ay=a2−b
or −sinθax−cosθby=a2−b2....(ii)
Equation (i) and (ii) meet the major axis at G(a(a2−b2)cosθ,0)
and g(a(a2−b2)sinθ,0)
Now, PG2+Qg2={a(a2−b2)cosθ−acosθ}2+ (0−bsinθ)2+{a(a2−b2)cosθ−acosθ}2+(0−bcos0)2 =a2(a2−b2)2+b2+a2 =a2{a4(a2−b2)2+a2b2+1} =a2{(1−a2b2)2+a2b2+1}=a2(e4+2−e2)