Q.
If the normal to the ellipse 3x2+4y2=12 at a point P on it is parallel to the line, 2x+y=4 and the tangent to the ellipse at P passes through Q(4,4) then PQ is equal to :
3x2+4y2=12 4x2+3y2=1x=2cosθ,y=3sinθ
Let P(2cosθ,3sinθ)
Equation of normal is x1a2x−y1b2y=a2−b2 2xsinθ−3cosθy=sinθcosθ
Slope 32tanθ=−2∴tanθ=−3
Equation of tangent is
it passes through (4, 4) 3xcosθ+23sinθy=6 12cosθ+83sinθ=6 cosθ=−21,sinθ=23∴θ=120∘
Hence point P is (2cos120∘,3sin120∘) P(1−,23),Q(4,4) PQ=255