The normal at P(acosθ,bsinθ) is cosθax−sinθbx=a2−b2,
where a2=14,b2=5
It meets the curve again at Q(2θ),
i.e., (acos2θ,bsin2θ) ∴cosθa(acos2θ)−sinθb(bsin2θ)=a2−b2 ⇒cosθ14(cos2θ)−sinθ5(sin2θ)=14−5 ⇒28cos2θ−14−10cos2θ=9cosθ ⇒18cos2θ−9cosθ−14=0 ⇒(6cosθ−7)(3cosθ−2)=0 ⇒cosθ=32