Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the normal at one end of a latus-rectum of an ellipse (x2/a2)+(y2/b2)=1 passes through one extremity of the minor axis, then the eccentricity of the ellipse is given by the equation
Q. If the normal at one end of a latus-rectum of an ellipse
a
2
x
2
+
b
2
y
2
=
1
passes through one extremity of the minor axis, then the eccentricity of the ellipse is given by the equation
3071
217
KCET
KCET 2000
Conic Sections
Report Error
A
e
2
+
e
−
1
=
0
12%
B
e
2
+
e
+
1
=
0
11%
C
e
4
+
e
2
+
1
=
0
25%
D
e
4
+
e
2
−
1
=
0
51%
Solution:
Normal at
(
a
e
,
a
b
2
)
of ellipse
a
2
x
2
+
b
2
y
2
=
1
is
a
e
/
a
2
x
−
a
e
=
a
b
2
/
b
2
y
−
b
2
/
a
(
x
1
/
a
2
x
−
x
1
=
y
1
/
b
2
y
−
y
1
)
It passes thro’
(
0
,
−
b
)
if
a
e
/
a
2
0
−
a
e
=
1/
a
−
b
−
b
2
/
a
⇒
−
a
2
=
−
a
(
b
+
a
b
2
)
⇒
a
=
a
ab
+
b
2
⇒
a
2
=
ab
+
b
2
=
ab
+
a
2
−
a
2
e
2
⇒
ab
=
a
2
e
2
⇒
b
=
a
e
2
⇒
b
2
=
a
2
e
4
⇒
a
2
(
1
−
e
2
)
=
a
2
e
4
⇒
1
−
e
2
=
e
4
⇒
e
4
+
e
2
=
1