Since, sec2α+cosec2α−3=(1+tan2α)+(1+cot2α)−3 =−1+(tanα−cotα)2+2=1+(tanα−cotα2)>0
Hence, the point (secα,cosecα) lies outside the circle x2+y2−3=0
Now, the minimum distance =(secα−0)2+(cosecα−0)2−3=4+(tanα−cotα)2−3 (Minimum is attained, when tanα=cotα)=2−3≡a−b (Given) So, a=2,b=3 Hence, a3+b2=17