Q.
If the minimum area of the circle which touches the parabola y=x2+1 and y2=x−1 is baπ sq.units , where a&b are co-prime numbers, then the value of a+b is
⇒ The given parabola are symmetric about the line y=x ⇒ Tangents at A and B must be parallel to y=x ⇒(dxdy)minA=1=(dxdy)minB ⇔2xB=1⇒xh=21⇒yB=xB2+1=45 ⇒B=(21,45)⇒A=(45,21) ⇒∣AB∣=(45−21)2+(21−45)2 =432 ⇒ Radius of a circle =832 ⇒ Required area =64π(9)(2)=329π ⇒a=9,b=32 ⇒a+b=41