Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the mean of the set of numbers x1, x2, x3, ldots, xn is barx, then the mean of the numbers xi+2 i, 1 ≤ i ≤ n is
Q. If the mean of the set of numbers
x
1
,
x
2
,
x
3
,
…
,
x
n
is
x
ˉ
, then the mean of the numbers
x
i
+
2
i
,
1
≤
i
≤
n
is
2865
272
Statistics
Report Error
A
x
ˉ
+
2
n
B
x
ˉ
+
n
+
1
C
x
ˉ
+
2
D
x
ˉ
+
n
Solution:
We know that
x
ˉ
=
n
i
=
1
∑
n
x
i
⇒
i
=
1
∑
n
x
i
=
n
x
ˉ
∴
n
i
=
1
∑
n
(
x
i
+
2
i
)
=
n
i
=
1
∑
n
x
i
+
2
i
=
1
∑
n
i
=
n
n
x
ˉ
+
2
(
1
+
2
+
…
n
)
=
n
n
x
ˉ
+
2
2
n
(
n
+
1
)
=
x
ˉ
+
(
n
+
1
)