h2+r2=32=9…(1)
Volume of cone V=31πr2h…(2)
From (1) and (2), ⇒V=31π(9−h2)h ⇒V=31π(9h−h3) ⇒dhdv=31π(9−3h2)
For maxima/minima, dhdV=0 ⇒31π(9−3h2)=0 ⇒h=±3 ⇒h=3(∵h>0)
Now ; dh2d2V=31π(−6h)=−2πh=−23π
Here, (dh2d2V)ath=3<0
Then, h=3 is point of maxima
Hence, the required maximum volume is, V=31π(9−3)3=23πm3 ⇒k3π=23π ⇒k=2