Q. If the matrix is orthogonal, then

 2812  208 Jharkhand CECEJharkhand CECE 2010 Report Error

Solution:

Let Since, matrix is orthogonal

\begin{array}{l}
{\left[\begin{array}{ccc}
0 & 2 \beta & \gamma \\
\alpha & \beta & -\gamma \\
\alpha & -\beta & \gamma
\end{array}\right]\left[\begin{array}{ccc}
0 & \alpha & \alpha \\
2 \beta & \beta & -\beta \\
\gamma & -\gamma & \gamma
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
\Rightarrow \left[\begin{array}{ccc}
4 \beta^{2}+\gamma^{2} & 2 \beta^{2}-\gamma^{2} & -2 \beta^{2}+\gamma^{2} \\
2 \beta^{2}-\gamma^{2} & \alpha^{2}+\beta^{2}+\gamma^{2} & \alpha^{2}-\beta^{2}-\gamma^{2} \\
-2 \beta^{2}+\gamma^{2} & \alpha^{2}-\beta^{2}-\gamma^{2} & \alpha^{2}+\beta^{2}+\gamma^{2}
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { Equating the corresponding }
\end{array}

Equating the corresponding elements of above matrices, we get (i) (ii) ? (iii) Adding Eqs. (i) and (ii), we get From Eq. (ii),
From Eq. (iii),