Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the matrix [ beginmatrix 0 2β γ α β -γ α -β γ endmatrix ] is orthogonal, then
Q. If the matrix
⎣
⎡
​
0
α
α
​
2
β
β
−
β
​
γ
−
γ
γ
​
⎦
⎤
​
is orthogonal, then
2802
208
Jharkhand CECE
Jharkhand CECE 2010
Report Error
A
α
=
±
2
​
1
​
B
β
=
±
6
​
1
​
C
γ
=
±
3
​
1
​
D
All of these
Solution:
Let
A
=
⎣
⎡
​
0
α
α
​
2
β
β
=
β
​
γ
−
γ
γ
​
⎦
⎤
​
Since, matrix
A
is orthogonal
∴
A
A
′
=
1
⇒
\begin{array}{l}
{\left[\begin{array}{ccc}
0 & 2 \beta & \gamma \\
\alpha & \beta & -\gamma \\
\alpha & -\beta & \gamma
\end{array}\right]\left[\begin{array}{ccc}
0 & \alpha & \alpha \\
2 \beta & \beta & -\beta \\
\gamma & -\gamma & \gamma
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
\Rightarrow \left[\begin{array}{ccc}
4 \beta^{2}+\gamma^{2} & 2 \beta^{2}-\gamma^{2} & -2 \beta^{2}+\gamma^{2} \\
2 \beta^{2}-\gamma^{2} & \alpha^{2}+\beta^{2}+\gamma^{2} & \alpha^{2}-\beta^{2}-\gamma^{2} \\
-2 \beta^{2}+\gamma^{2} & \alpha^{2}-\beta^{2}-\gamma^{2} & \alpha^{2}+\beta^{2}+\gamma^{2}
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { Equating the corresponding }
\end{array}
⎣
⎡
​
0
α
α
​
2
β
β
−
β
​
γ
−
γ
γ
​
⎦
⎤
​
⎣
⎡
​
0
2
β
γ
​
α
β
−
γ
​
α
−
β
γ
​
⎦
⎤
​
=
⎣
⎡
​
1
0
0
​
0
1
0
​
0
0
1
​
⎦
⎤
​
⇒
⎣
⎡
​
4
β
2
+
γ
2
2
β
2
−
γ
2
−
2
β
2
+
γ
2
​
2
β
2
−
γ
2
α
2
+
β
2
+
γ
2
α
2
−
β
2
−
γ
2
​
−
2
β
2
+
γ
2
α
2
−
β
2
−
γ
2
α
2
+
β
2
+
γ
2
​
⎦
⎤
​
=
⎣
⎡
​
1
0
0
​
0
1
0
​
0
0
1
​
⎦
⎤
​
Equating the corresponding elements of above matrices, we get
4
β
2
+
γ
2
=
1
?
(i)
2
β
2
−
γ
2
=
0
…
(ii)
α
2
+
β
2
+
γ
2
=
1
? (iii) Adding Eqs. (i) and (ii), we get
6
β
2
=
1
⇒
β
=
±
6
​
1
​
From Eq. (ii),
⇒
γ
2
=
2
β
2
⇒
γ
2
=
6
2
​
=
3
1
​
⇒
γ
=
±
3
​
1
​
From Eq. (iii),
α
2
=
1
−
β
2
−
γ
2
⇒
α
2
=
1
−
6
1
​
−
3
1
​
=
2
1
​
⇒
α
=
±
2
​
1
​