Q.
If the lines 1x=−1y−1=2z+2,2x=1y−1=1z+2,−1x=−1y−1=1z+2 intersect the plane x+y−z=0 at P,Q,R respectively, then the area (in sq. units) of triangle PQR is
Coordinates of P,Q,R are (r1,−r1+1,2r1−2),(2r2,r2+1,r2−2),(−r3,−r3+1,r3−2) respectively.
It must satisfy the plane, hence r1=23,r2=2−3,r3=+1. So points P,Q,R are (23,−21,1),(−3,−21,2−7)(−1,0,−1) respectively. PQ→=−29i^−29k^ PR→=2−5ı^+21j^−2k^
Area =21∣∣PQ→×PR→∣∣ =∣∣81∣∣∣∣i−9−5j^01k^−9−4∣∣ =81∣∣9i^+9j^−9k^∣∣=893 sq. units