A plane passing through the line of intersection of the given 2 planes is (x−y+z−2)+μ(λx+3z+5)=0 ⇒x(1+λμ)−y+z(1+3μ)+5μ−2=0
Since the given line 2x−1=−1y=2z must lie in this plane ⇒2(1+λμ)+(−1)(−1)+(1+3μ)2=0 ⇒2+2λμ+1+2+6μ=0 ⇒2λμ+6μ+5=0…..(i)
The point (1,0,0) must satisfy the equation of the plane ⇒1+λμ−0+0+5μ−2=0 ⇒λμ+5μ−1=0……(ii)
Solving (i) and (ii) we get, μ=47,λ=7−31 ⇒7λ=−31