Since, the lines intersect, therefore they must have a point in common, i.e. 2x−1=3y+1=4z−1=λ
and 1x−3=2y−k=1z=μ ⇒x=2λ+1,y=3λ−1 z=4λ+1
and x=μ+3,y=2μ+k,z=μ are same. ⇒2λ+1=μ+3 3λ−1=2μ+k 4λ+1=μ
On solving Ist and IIIrd terms, we get, λ=−23
and μ=−5 ∴k=3λ−2μ−1 ⇒k=3(−23)−2(−5)−1=29 ∴k=29