p1x+q1y=1,p2x+q2y=1p3x+q3y=1
Given lines are concurrent ⇒∣∣p1p2p3q1q2q3111∣∣=0 ⇒p1(q2−q3)−q1(p2−p3)+(p2q3−p3q2)=0 ⇒(p1q2−p2q1)+(p2q3−p3q2)+(p3q1−p1q3)=0
The left hand side of the above equation is also equal to twice the area of a triangle with coordinates (p1,q1),(p2,q2),(p3,q3)
Since it is equal to zero, (p1,q1),(p2,q2),(p3,q3) are collinear.