Any point on the line y=3x at a distance r from the origin is (2r,23r) . This point lies on the given curve if 8r3+833r3+433r2+45r2+49r2+2r+253r−1=0 ⇒(33+1)r3+2(33+14)r2+4(4+53)r−8=0
If OA=r1,OB=r2 and OC=r3
Then OA.OBOC=r1r2r3=∣∣33+18∣∣ =134(33−1)