The equation of any normal to a2x2+b2y2=1 is axsecϕ−bycosecϕ=a2−b2...(i)
The straight line xcosα+ysinα=p will be a normal to the ellipse a2x2+b2y2=1, if Eq. (i) and xcosα+ysinα=p represent the same line. ∴cosαasecϕ=sinα−bcosecϕ=pa2−b2 ⇒cosϕ=(a2−b2)cosαap sinϕ=(a2−b2)sinα−bp ∵sin2ϕ+cos2ϕ=1 ⇒(a2−b2)2sin2αb2p2+(a2−b2)2cos2αa2p2=1 ⇒p2(b2cosec2α+a2sec2α)=(a2−b2)2